Environmental

At the global scale and in the broadest sense environmental management involves the oceansfreshwater systems, land and atmosphere, but following the sustainability principle of scale it can be equally applied to any ecosystem from a tropical rainforest to a home garden.

Atmosphere

At a March 2009 meeting of the Copenhagen Climate Council, 2,500 climate experts from 80 countries issued a keynote statement that there is now "no excuse" for failing to act on global warming and that without strong carbon reduction "abrupt or irreversible" shifts in climate may occur that "will be very difficult for contemporary societies to cope with".  Management of the global atmosphere now involves assessment of all aspects of the carbon cycle to identify opportunities to address human-induced climate change and this has become a major focus of scientific research because of the potential catastrophic effects on biodiversity and human communities (see Energy below).

Freshwater and oceans

Water covers 71% of the Earth's surface. Of this, 97.5% is the salty water of the oceans and only 2.5% freshwater, most of which is locked up in the Antarctic ice sheet. The remaining freshwater is found in glaciers, lakes, rivers, wetlands, the soil, aquifers and atmosphere. Due to the water cycle, fresh water supply is continually replenished by precipitation, however there is still a limited amount necessitating management of this resource. Awareness of the global importance of preserving water for services has only recently emerged as, during the 20th century, more than half the world’s wetlands have been lost along with their valuable environmental services. Increasing urbanization pollutes clean water supplies and much of the world still does not have access to clean, safe water. Greater emphasis is now being placed on the improved management of blue (harvestable) and green (soil water available for plant use) water, and this applies at all scales of water management.

Land use

Loss of biodiversity stems largely from the habitat loss and fragmentation produced by the human appropriation of land for development, forestry and agriculture as natural capital is progressively converted to man-made capital. Land use change is fundamental to the operations of the biosphere because alterations in the relative proportions of land dedicated to urbanisationagricultureforestwoodlandgrassland and pasture have a marked effect on the global water, carbon and nitrogen biogeochemical cycles and this can impact negatively on both natural and human systems. At the local human scale, major sustainability benefits accrue from sustainable parks and gardens and green cities.

Food is essential to life. Feeding more than seven billion human bodies takes a heavy toll on the Earth’s resources. This begins with the appropriation of about 38% of the Earth’s land surface and about 20% of its net primary productivity.  Added to this are the resource-hungry activities of industrial agribusiness – everything from the crop need for irrigation water, synthetic fertilizers and pesticides to the resource costs of food packaging, transport (now a major part of global trade) and retail. Environmental problems associated with industrial agriculture and agribusiness are now being addressed through such movements as sustainable agriculture, organic and more sustainable business practices.

Management of human consumption

The underlying driver of direct human impacts on the environment is human consumption.  This impact is reduced by not only consuming less but by also making the full cycle of production, use and disposal more sustainable. Consumption of goods and services can be analyzed and managed at all scales through the chain of consumption, starting with the effects of individual lifestyle choices and spending patterns, through to the resource demands of specific goods and services, the impacts of economic sectors, through national economies to the global economy.  Analysis of consumption patterns relates resource use to the environmental, social and economic impacts at the scale or context under investigation. The ideas of embodied resource use (the total resources needed to produce a product or service), resource intensity, and resource productivity are important tools for understanding the impacts of consumption. Key resource categories relating to human needs are foodenergy, materials and water.

Energy

The Sun's energy, stored by plants (primary producers) during photosynthesis, passes through the food chain to other organisms to ultimately power all living processes. Since the industrial revolution the concentrated energy of the Sun stored in fossilized plants as fossil has been a major driver of technology which, in turn, has been the source of both economic and political power. In 2007 climate scientists of the IPCC concluded that there was at least a 90% probability that atmospheric increase in CO2 was human-induced, mostly as a result of fossil fuel emissions but, to a lesser extent from changes in land use. Stabilizing the world’s climate will require high-income countries to reduce their emissions by 60–90% over 2006 levels by 2050 which should hold CO2 levels at 450–650 ppm from current levels of about 380 ppm. Above this level, temperatures could rise by more than 2°C to produce “catastrophic” climate change.  Reduction of current CO2 levels must be achieved against a background of global population increase and developing countries aspiring to energy-intensive high consumption Western lifestyles.

Water

Water security and food security are inextricably linked. In the decade 1951–60 human water withdrawals were four times greater than the previous decade. This rapid increase resulted from scientific and technological developments impacting through the economy – especially the increase in irrigated land, growth in industrial and power sectors, and intensive dam construction on all continents. This altered the water cycle of rivers and lakes, affected their water quality and had a significant impact on the global water cycle.  Currently towards 35% of human water use is unsustainable, drawing on diminishing aquifers and reducing the flows of major rivers: this percentage is likely to increase if climate change impacts become more severe, populations increase, aquifers become progressively depleted and supplies become polluted and unsanitary.  From 1961 to 2001 water demand doubled - agricultural use increased by 75%, industrial use by more than 200%, and domestic use more than 400%.  In the 1990s it was estimated that humans were using 40–50% of the globally available freshwater in the approximate proportion of 70% for agriculture, 22% for industry, and 8% for domestic purposes with total use progressively increasing.

Food

The American Public Health Association (APHA) defines a "sustainable food system" as "one that provides healthy food to meet current food needs while maintaining healthy ecosystems that can also provide food for generations to come with minimal negative impact to the environment. A sustainable food system also encourages local production and distribution infrastructures and makes nutritious food available, accessible, and affordable to all. Further, it is humane and just, protecting farmers and other workers, consumers, and communities."  Concerns about the environmental impacts of agribusiness and the stark contrast between the obesity problems of the Western world and the poverty and food insecurity of the developing world have generated a strong movement towards healthy, sustainable eating as a major component of overall ethical consumerism.  The environmental effects of different dietary patterns depend on many factors, including the proportion of animal and plant foods consumed and the method of food production.  The World Health Organization has published a Global Strategy on Diet, Physical Activity and Health report which was endorsed by the May 2004 World Health Assembly. It recommends the Mediterranean diet which is associated with health and longevity and is low in meat, rich in fruits and vegetables, low in added sugar and limited salt, and low in saturated fatty acids; the traditional source of fat in the Mediterranean is olive oil, rich in monounsaturated fat. The healthy rice-based Japanese diet is also high in carbohydrates and low in fat. Both diets are low in meat and saturated fats and high in legumes and other vegetables; they are associated with a low incidence of ailments and low environmental impact.

Materials, toxic substances, waste

As global population and affluence has increased, so has the use of various materials increased in volume, diversity and distance transported. Included here are raw materials, minerals, synthetic chemicals (including hazardous substances), manufactured products, food, living organisms and waste.  By 2050, humanity could consume an estimated 140 billion tons of minerals, ores, fossil fuels and biomass per year (three times its current amount) unless the economic growth rate is decoupled from the rate of natural resource consumption. Developed countries' citizens consume an average of 16 tons of those four key resources per capita (ranging up to 40 or more tons per person in some developed countries with resource consumption levels far beyond what is likely sustainable.

Every economic activity produces material that can be classified as waste. To reduce waste industry, business and government are now mimicking nature by turning the waste produced by industrial metabolism into resource. Dematerialization is being encouraged through the ideas of industrial ecologyecodesign and ecolabelling. In addition to the well-established “reduce, reuse and recycle,” shoppers are using their purchasing power for ethical consumerism.

Taken from Wikipedia

 

Add your comment